206 research outputs found

    H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback

    Full text link
    We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.Comment: 39 pages, 2 figures, submitted to IEEE Transactions on Automatic Contro

    Optimal Output Feedback Architecture for Triangular LQG Problems

    Full text link
    Distributed control problems under some specific information constraints can be formulated as (possibly infinite dimensional) convex optimization problems. The underlying motivation of this work is to develop an understanding of the optimal decision making architecture for such problems. In this paper, we particularly focus on the N-player triangular LQG problems and show that the optimal output feedback controllers have attractive state space realizations. The optimal controller can be synthesized using a set of stabilizing solutions to 2N linearly coupled algebraic Riccati equations, which turn out to be easily solvable under reasonable assumptions.Comment: To be presented at 2014 American Control Conferenc

    Weighted 1\ell_1-minimization for generalized non-uniform sparse model

    Get PDF
    Model-based compressed sensing refers to compressed sensing with extra structure about the underlying sparse signal known a priori. Recent work has demonstrated that both for deterministic and probabilistic models imposed on the signal, this extra information can be successfully exploited to enhance recovery performance. In particular, weighted 1\ell_1-minimization with suitable choice of weights has been shown to improve performance in the so called non-uniform sparse model of signals. In this paper, we consider a full generalization of the non-uniform sparse model with very mild assumptions. We prove that when the measurements are obtained using a matrix with i.i.d Gaussian entries, weighted 1\ell_1-minimization successfully recovers the sparse signal from its measurements with overwhelming probability. We also provide a method to choose these weights for any general signal model from the non-uniform sparse class of signal models.Comment: 32 Page

    Solving Commutative Relaxations of Word Problems

    Get PDF
    We present an algebraic characterization of the standard commutative relaxation of the word problem in terms of a polynomial equality. We then consider a variant of the commutative word problem, referred to as the “Zero-to-All reachability” problem. We show that this problem is equivalent to a finite number of commutative word problems, and we use this insight to derive necessary conditions for Zero-to-All reachability. We conclude with a set of illustrative examples
    corecore